
1

Tests in V-Model
UML and Java

2

Reminders

3

V-model

4

Testing Consistency (not uniquely OO)

• We need consistency between
documentation/models:

• Natural Language Text (English/French)

• (UML) models

• (Java) Code

• Comments in (Java) Code

• Develop tests in parallel with code to avoid
inconsistency

• NOTE: testing after all the code is developed is
usually a bad idea, but it is better than no testing
at all!

5

 test level for each subsystem

· Validation Tests

· Integration Tests

· Unit Tests

6

Test in V-model
UML models

7

UML – the digrams

• Specification

– Use cases diagrams  Validation tests

– Subsystem level (design and analysis)  integration tests

• Association and aggregation test (class diagrams)

• Sequence tests (communication and sequence diagrams)

• Exception tests

• Detailed design

– Detailed class (state machine diagrams)  Unit test

8

How to Use UML

• Tests should be derived from the requirements

specification (in UML).

• The UML diagrams should help us because:

– provided the UML is validated we have a good

chance of testing the system against what is

required

– the structure of the UML should correspond to the

structure of the developed code, so we can re-use

this design structure to structure our tests.

9

Validation

• Use Case Diagrams – for each use case examine possible scenarios,
and choose a subset of alternative paths for testing. For example:

10

Integration : composition tree

• The test sequence can be decided by looking at the tree-like
structure of composition hierarchies. For example:

• Big Bang Testing : all at once at the system interface

• Top-Down Testing : does not require all lower level components to
be complete

• Bottom-Up Testing : does not require all higher level components to
be complete

11

Unit Tests

• We must test the invariants of each class

• We must test the functionality of each method of

each class

• classes with sequential constraints on the

activation methods may have sequencing errors.

The required behavior should be tested using a

model state machine

12

An example

13

Sequencing

A) Preparation seq
• Validation tests 1st

• Integration tests 3rd

• Unit tests 5th

B) Runtime and coding

• Unit tests with Junit 6th
• Integration tests 4th

• Validation tests 2nd

14

Validation Tests

15

Preparation Validation tests

• Input data

– Client: can be registered or not;

– Borrowed items: already made by the client

– There is a delay in a borrowed item?

– the number of items borrowed corresponds to the
maximum number of this customer?

• document:

– exist?

– Borrowable or just viewable?

– already available or borrowed?

16

Preparation Validation tests

• Output Data

– Borrow accepted or refused.

– Remark: the definition of validation testing for the use case

borrowdocument can lift at least the following questions (to ask the client):

• a subscriber who has not paid his registration can still borrow a document?

• should he be considered as a customer at the normal rate until he

renewe its subscription?

• or must re-subscribe before he can borrow a document?

• In general, validation test preparation allows remove ambiguities and

gaps in the specification.

NOTE : Tests prepared earlier implies cheaper corrections

17

Preparation Validation tests

• Decision table

18

Preparation Validation tests

To illustrate the testing process, we will treat the first 2 test
cases

Test 1 – the client is not registered

Test Code Steps:

1. Intialise dummy Mediatheque

2. Check state of current Mediatheque (including statistics)

3. Attempt to « emprunter » a document for a client who does not
exist

4. Check state of current Mediatheque (including statistics)

19

Preparation Validation tests

To illustrate the testing process, we will treat the first 2 test
cases

Test 2 – client has a borrowed document in delay

Test Code Steps:

1. Intialise dummy Mediatheque

2. Check state of current Mediatheque (including statistics)

3. Authorise « emprunter » of a document for a client

4. Advance the date so that the previous « emprunt » is now past
its deadline

5. Attempt to « emprunter » by the same client before they return
the document that is past its deadline

6. Check state of current Mediatheque (including statistics)

20

Sequencing

A) Preparation seq
• Validation tests 1st

• Integration tests 3rd

• Unit tests 5th

B) Runtime and coding

• Unit tests with Junit 6th
• Integration tests 4th

• Validation tests 2nd

21

Validation Tests
Coding

• Even if our system is not yet completely

developed, we can write the code for the

validation tests.

• For this example, we will code the validation test

as a JUnit test on the mediatheque class.

– NOTE: A validation of the overall system is often

known as an acceptance test; and can be thought

of as a system unit test.

22

Test 1 – a client is not registred

/**

* Document TEST 1

* Client n'est pas inscrit

*/@Test (expected= OperationImpossible.class)

// we expect an exception

public void clientPasInscrit() throws

OperationImpossible,InvariantBroken{

m1.emprunter("nom", "prenom", "Test_code1");

}

To see why we expect an exception we must look at the setup code

Validation Tests
Coding

23

@Beforepublic

void setUp() throws Exception {

// un test de validation est un test unitaire sur la classe

 Mediathequem1 = new Mediatheque("mediatheque test");

 Genre g = new Genre("Test_nom1");

 Localisation l = new Localisation("Test_salle1","Test_rayon1");

 Document d1 = new Video("Test_code1",l, "Test_titre1", "Test_auteur1",

 "Test_annee1" ,g, "Test_duree1", "Test_mentionLegale1");

 Document d2 = new Video("Test_code2",l, "Test_titre2", "Test_auteur2",

"Test_annee2" ,g, "Test_duree2", "Test_mentionLegale2");

 m1.ajouterDocument(d1);

 m1.metEmpruntable("Test_code1");

 m1.ajouterDocument(d2);

 m1.metEmpruntable("Test_code2");

 CategorieClient cat = new CategorieClient("Test_Cat1", 10, 1.5, 2.5, 3.5,

true);

 Client c1 = new Client("Test_Client_Nom1", "Test_Client_Prenom1",

"Test_Client_Address1",cat);

 m1.inscrire(c1);

 Client c2 = new Client("nom", "prenom", "Test_Client_Address2",cat);

}

@Afterpublic void tearDown() throws Exception {m1 = null;}

Validation Tests
Coding

24

Test 2 - Client n'est pas sans retard

/**

* Document TEST 2

* Client n'est pas sans retard

*/@Test (expected= OperationImpossible.class)

// we expect an exception

public void clientAvecRetard() throws

OperationImpossible,InvariantBroken{

 m1.emprunter("nom1", "prenom1", "Test_code1");

Datutil.addAuJour(7);Datutil.addAuJour(7);

 m1.emprunter("nom1", "prenom1", "Test_code2");

}

Validation Tests
Coding

25

Sequencing

A) Preparation seq
• Validation tests 1st

• Integration tests 3rd

• Unit tests 5th

B) Runtime and coding

• Unit tests with Junit 6th
• Integration tests 4th

• Validation tests 2nd

26

Integration test preparation

• The operation « emprunter » requires co-ordination between the

• client,

• mediatheque,

• document, and

• ficheEmprunt objects

We wish to verify that the traces (of communication) between the objects

involved in the collaboration, as specified in UML, are executed by the

implementation (in Java), following the specified temporal ordering.

These tests can be derived from the communications and/or sequence

diagrams …

27

Integration test preparation

• In the communications diagram, the temporal order is specified by the

numbering

28

Integration test preparation

29

Integration test preparation

• Integration Test1 - An « emprunt » is not authorised

because the document is not empruntable
– Construct a document,and make it not Empruntable

– Construct a client

– Construct a FicheEmprunt for the client and document

– Check that:

1. the system handles the exceptional case in a meaningful way

2. the client and document states/statistics have not been changed

30

Integration test preparation

• Integration Test 2 Design: An « emprunt » is not

authorised because the document is « emprunté »
– Construct a document, which is empruntable and emprunté

– Construct a client

– Construct a FicheEmprunt for the client and document

– Check that:

1. the system handles the exceptional case in a meaningful way

2. the client and document states/statistics have not been

changed

31

Integration test preparation

• Integration Test 3: Emprunt is authorised
– Construct a document, which is empruntable and not emprunté

– Construct a client

– Construct a FicheEmprunt for the client and document

– Check that the system handles the exceptional case in a meaningful way

– Check that:

1. the tarif and duree des emprunts are as required

2. the client and document states/statistics have been updated as

required

32

Sequencing

A) Preparation seq
• Validation tests 1st

• Integration tests 3rd

• Unit tests 5th

B) Runtime and coding

• Unit tests with Junit 6th
• Integration tests 4th

• Validation tests 2nd

33

Etude de cas –Tests d’Integration –
Codage et Execution

Integration Test1 Code: Verify correct co-ordination by

FicheEmprunt
– Construct a document, and make it Empruntable

– Construct a client

– Construct a FicheEmprunt for the client and document using a

dummy mediatheque

– Check that the tarif and “duree des emprunts” values for the

FicheEmprunt are as required

– Check that the client and document states have been updated

correctly

We should do the same for integration tests 2 and 3

34

• Integration Tests: Typical/Example Development
Status

Etude de cas –Tests d’Integration –
Codage et Execution

35

Etude de cas –Tests d’Integration –
Codage et Execution

36

Sequencing

A) Preparation seq
• Validation tests 1st

• Integration tests 3rd

• Unit tests 5th

B) Runtime and coding

• Unit tests with Junit 6th
• Integration tests 4th

• Validation tests 2nd

37

Unit test preparation

• We will use the following UML diagrams to « derive » our unit tests for

the Document class:

– Class Diagrams

– State machine diagrams

• We may also need to use the original natural language text.

• We should not have to examine the Java code Document.java, but

can just call the code using the Document.class file – this is black box

testing.

• We may need access to the documentation for the code in order to

understand code properties that are not specified in the UML models.

• NOTE: If documentation is poor then we will have to examine the code

in order to be able to guarantee that our tests compile and execute

correctly.

38

Unit test preparation

39

Unit test preparation

40

Unit test preparation

41

Unit test preparation

42

Unit test preparation

All design decisions involve compromise.

QUESTION: Can you see the advantages/disadvantages of each option

for specifying the invariant property?

• In this example, we choose to pursue option 1 (b) - Edit the

• Document class, because –

– It is good practice in OO development to have invariants
specified for all classes, and

– It is the « simplest » coding option for « Java beginners »

43

Unit test preparation

44

Unit test preparation

45

Unit test preparation

46

Unit test preparation

47

Unit test preparation

48

Unit test preparation

49

Sequencing

A) Preparation seq
• Validation tests 1st

• Integration tests 3rd

• Unit tests 5th

B) Runtime and coding

• Unit tests with Junit 6th
• Integration tests 4th

• Validation tests 2nd

50

Unit tests
Coding with JUnit

51

Unit tests
Coding with JUnit

52

Unit tests
Coding with JUnit

53

Unit tests
Coding with JUnit

54

Unit tests
Coding with JUnit

55

Unit tests
Coding with JUnit

56

Unit tests
Coding with JUnit

57

Unit tests
Coding with JUnit

58

Unit tests
Coding with JUnit

59

Unit tests
Coding with JUnit

60

Unit tests
Coding with JUnit

61

Unit tests
Coding with JUnit

62

Unit tests
Coding with JUnit

63

Unit tests
Coding with JUnit

64

V-Model terminated

65

SOME MORE ADVANCED ISSUES

INHERITANCE

Inheritance complicates the testing process:
– Should we also have a test inheritance hierarchy?

– How do we test the subclassing relationship?

EXCEPTIONS

Exceptions complicate the testing process:
– Exception handling testing requires generating the

– exceptions and where/how this should be done is not always obvious

GUIs are difficult to test as you often need to

simulate user actions

